In Situ Akt Phosphorylation in the Nucleus Tractus Solitarii Is Involved in Central Control of Blood Pressure and Heart Rate

Author:

Huang Hsiao-Ning1,Lu Pei-Jung1,Lo Wan-Chen1,Lin Chia-Hui1,Hsiao Michael1,Tseng Ching-Jiunn1

Affiliation:

1. From the Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.

Abstract

Background— Previously, we have shown that nitric oxide (NO) plays a significant role in central cardiovascular regulation and modulates the baroreflex in the nucleus tractus solitarii (NTS) of rats. NO production is mediated by activation of NO synthase (NOS). Insulin signaling was involved in controlling peripheral blood pressure via the activation of endothelial NOS. Here, we investigated whether the insulin signal transduction pathway is involved in controlling central cardiovascular effects. Methods and Results— Insulin was injected into NTS of urethane-anesthetized male Wistar-Kyoto (WKY) rats. Unilateral microinjection (60 nL) of insulin (100 IU/mL) into the NTS produced prominent depressor and bradycardic effects in 8- and 16-week-old WKY rats. In addition, pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the NOS inhibitor L-NAME into the NTS caused attenuation of the cardiovascular response evoked by insulin in either 8- or 16-week-old WKY rats. Western blot analysis showed a significant increase (2.6±0.4-fold; P <0.05) in Akt phosphorylation after insulin injection, whereas LY294002 abolished the insulin-induced effects. In situ Akt phosphorylation was found in NTS by immunohistochemistry analysis after injection of insulin. This in situ Akt phosphorylation was abolished significantly after injection of LY294002. Conclusions— Take together, these results suggest that the insulin-PI3K-Akt-NOS signaling pathway may play a significant role in central cardiovascular regulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3