Reoxygenation‐Derived Toxic Reactive Oxygen/Nitrogen Species Modulate the Contribution of Bone Marrow Progenitor Cells to Remodeling After Myocardial Infarction

Author:

Moldovan Nicanor I.12,Anghelina Mirela2,Varadharaj Saradhadevi2,Butt Omer I.2,Wang Tiangshen2,Yang Fuchun2,Moldovan Leni2,Zweier Jay L.12

Affiliation:

1. Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH

2. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH

Abstract

Background The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells ( BMPC s) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling. Methods and Results For assessment of cellular origin, local oxygenation, redox status, and fate of cells in the infarcted region, myocardial infarction in mice with or without LacZ + bone marrow transplantation was induced by coronary ligation. Sham‐operated mice served as controls. After 1 week, LacZ + BMPC ‐derived cells were found inhomogeneously distributed into the infarct zone, with a lower density at its core. Electron paramagnetic resonance (EPR) oximetry showed that pO 2 in the infarct recovered starting on day 2 post–myocardial infarction, concomitant with wall thinning and erythrocytes percolating through muscle microruptures. Paralleling this reoxygenation, increased generation of reactive oxygen/nitrogen species was detected at the infarct core. This process delineated a zone of diminished BMPC engraftment, and at 1 week infiltrating cells displayed immunoreactive 3‐nitrotyrosine and apoptosis. In vivo treatment with a superoxide dismutase mimetic significantly reduced reactive oxygen species formation and amplified BMPC accumulation. This treatment also salvaged wall thickness by 43% and left ventricular ejection fraction by 27%, with significantly increased animal survival. Conclusions BMPC engraftment in the infarct inversely mirrored the distribution of reactive oxygen/nitrogen species. Antioxidant treatment resulted in increased numbers of engrafted BMPC s, provided functional protection to the heart, and decreased the incidence of myocardial rupture and death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3