Multi-epitope mRNA Vaccine Design that Exploits Variola Virus and Monkeypox Virus Proteins for Elicitation of Long-lasting Humoral and Cellular Protection Against Severe Disease

Author:

Kovačić DženanORCID,Salihović AdnaORCID

Abstract

Human monkeypox represents a relatively underexplored infection that has received increased attention since the reported outbreak in May 2022. Due to its clinical similarities with human smallpox, this virus represents a potentially tremendous health problem demanding further research in the context of host-pathogen interactions and vaccine development. Furthermore, the cross-continental spread of monkeypox has reaffirmed the need for devoting attention to human poxviruses in general, as they represent potential bioterrorism agents. Currently, smallpox vaccines are utilized in immunization efforts against monkeypox, an unsurprising fact considering their genomic and phenotypic similarities. Though it offers long-lasting protection against smallpox, its protective effects against human monkeypox continue to be explored, with encouraging results. Taking this into account, this works aims at utilizing in silico tools to identify potent peptide-based epitopes stemming from the variola virus and monkeypox virus proteomes, to devise a vaccine that would offer significant protection against smallpox and monkeypox. In theory, a vaccine that offers cross-protection against variola and monkeypox would also protect against related viruses, at least in severe clinical manifestation. Herein, we introduce a novel multi-epitope mRNA vaccine design that exploits these two viral proteomes to elicit long-lasting humoral and cellular immunity. Special consideration was taken in ensuring that the vaccine candidate elicits a Th1 immune response, correlated with protection against clinically severe disease for both viruses. Immune system simulations and physicochemical and safety analyses characterize our vaccine candidate as antigenically potent, safe, and overall stable. The protein product displays high binding affinity towards relevant immune receptors. Furthermore, the vaccine candidate is to elicit a protective, humoral and Th1-dominated cellular immune response that lasts over five years. Lastly, we build a case about the rapidity and convenience of circumventing the live attenuated vaccine platform using mRNA vaccine technology.

Publisher

Poznan University of Medical Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3