A simple model of human walking

Author:

Campanelli Leonardo

Abstract

Aim. We investigate Alexander’s inverted pendulum model, the simplest mathematical model of human walking. Although it successfully explains some kinematic features of human walking, such as the velocity of the body's centre of mass, it does not account for others, like the vertical reaction force and the maximum walking speed. This paper aims to minimally extend Alexander’s model in such a way as to make it a viable and quantitative model of human walking for clinical biomechanics.Material and methods. In order to compare the predictions of Alexander’s model with experimental data on walking, we incorporate in it a robust phenomenological relation between stride frequency and stride length derived in the literature, and we introduce a step-angle dependent muscle force along the pendulum. We then analytically solve the pendulum's motion equation and find the corresponding analytical expression for the average walking speed.Results. The values of the average walking speed for different heights predicted by our model are in excellent agreement with the ones obtained in treadmill experiments. Moreover, it successfully predicts the observed walking-running transition speed, which occurs when the stride length equals the height of an individual. Finally, our extended model satisfactorily reproduces the experimentally observed ground reaction forces in the midstance and terminal stance phases. Consequently, the predicted value of the (height-dependent) maximum walking speed is in reasonable agreement with the one obtained in more sophisticated models of human walking.Conclusions. Augmented with our minimal extensions, Alexander’s model becomes an effective and realistic model of human walking applicable in clinical investigations of the human gate.

Publisher

Poznan University of Medical Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3