Effects of high oxygen tension on healthy volunteer microcirculation

Author:

Cousin Nicolas, ,Goutay Julien,Girardie Patrick,Favory Raphaël,Drumez Elodie,Mathieu Daniel,Poissy Julien,Parmentier Erika,Duburcq Thibault, , , , , , , ,

Abstract

Introduction: Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. Methods: This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO2). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. Results: Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P < 0.001) and bradycardia (55 (7) beats·min-1 vs 66 (8), P < 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P < 0.05) in response to increased PtcO2 (104.0 (45.9) kPa vs 6.3 (2.4), P < 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P < 0.05). Microvascular reactivity was preserved in every condition. Conclusions: Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO2 promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.

Publisher

Diving and Hyperbaric Medicine Journal

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3