Affiliation:
1. KUTAHYA DUMLUPINAR UNIVERSITY
2. NİĞDE ÖMER HALİSDEMİR ÜNİVERSİTESİ, BEDEN EĞİTİMİ VE SPOR YÜKSEKOKULU, ANTRENÖRLÜK EĞİTİMİ BÖLÜMÜ, HAREKET VE ANTRENMAN BİLİMLERİ ANABİLİM DALI
3. SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, GÜLHANE FİZYOTERAPİ VE REHABİLİTASYON FAKÜLTESİ
4. ANKARA YILDIRIM BEYAZIT UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES (MEDICINE), DEPARTMENT OF BIOSTATISTICS AND MEDICAL INFORMATICS
Abstract
This study investigates the efficacy of Artificial Neural Networks (ANN) in predicting volleyball league standings, focusing on the Turkish Volleyball Federation's Sultanlar and Efeler leagues over five seasons (2018-19 to 2022-23). Given the complexity and volume of performance data in volleyball, traditional analysis methods often face challenges such as data overload and high operational costs. ANN models, known for their ability to learn from and generalize data, present a promising solution to these challenges. By analyzing 23 input variables related to match performance, including points scored, services, attacks, and blocks, this study aims to identify the most influential factors on final league standings and provide a more objective, rapid, and economical analysis method. The results indicate significant potential for ANN in sports analytics, demonstrating high accuracy rates in predictions, especially for the Sultanlar League. However, the study also acknowledges limitations such as data quality and model complexity, suggesting areas for future research to enhance predictive accuracy and applicability of ANN in volleyball and other sports analytics.
Reference22 articles.
1. Aka, H., Akarçeşme, C., Aktuğ, Z. B., & Ozden, S. (2021a). The estimation of the set results in 2016/2017 &stel &nus sultans league games by artificial neural network. European Journal of Human Mo&ment; 47: 32-39.
2. Aka, H., Aktuğ, Z. B. & Kılıç, F. (2021b). Estimating the England premier league ranking with artificial neural network. Applied Artificial Intelligence; 35: 393-402.
3. Akarçeşme C, Aka H, Özden S, & Aktug, Z.B. (2020). Estimating the volleyball team ranking in the 2016 Rio Olympics by artificial neural network and linear model: Yapay sinir ağları & doğrusal model ile 2016 Rio Olimpiyatlarındaki voleybol takım sıralamasının tahmin edilmesi. Journal of Human Sciences 17: 1069-1078.
4. Bai, Z. & Bai, X. (2021). Sports Big Data: Management, Analysis, Applications, and Challenges. Complexity;6676297.
5. Beck, M. W. (2018). Neural NetTools: Visualization and analysis tools for neural networks. Journal of statistical software; 85: 1.