Author:
Islam Mohammad Sohidul,Islam Md Rafiqul,Hasan Md Kamrul,Hafeez ASM Golam,Chowdhury M Kaium,Pramanik Moaz Hosen,Iqbal Muhammad Aamir,Erman Murat,Barutcular Celaleddin,Konuşkan Ömer,Dubey Anamika,Kumar Ashwani,Sabagh Ayman El
Abstract
Maize, along with rice and wheat, is a popular staple food crop worldwide, and the most widely produced cereal crop. It is a versatile crop that may be utilized as a source of raw materials for human and animal fodders. Low agricultural yield and rapid population expansion significantly threaten future food security. Maize production is hampered by biotic and abiotic causes, with abiotic factors being the most critical limitation to agricultural output worldwide. Soil salinity is a key abiotic factor that reduces agricultural production by imposing negative impacts at several life cycle phases, including germination, seedling, vegetative, and reproductive development. Maize plants experience many physiological changes due to osmotic stress, toxicity of particular ions, and nutritional imbalance induced by salt stress. The degree and duration of stress, crop growth phases, genetic characteristics, and soil conditions influence yield reduction. Maize plants can tolerate salt stress involving a complex mechanism by changing their physiological, biochemical, and metabolic activities like stomatal functioning, photosynthesis, respiration, transpiration, hormone regulation, enzymes, metabolite generation, etc. After studying the salt tolerance mechanisms of maize plants under stress, integrated management techniques should be developed for maize agriculture in saline settings. Therefore, the study of plant responses to salt stress, stress tolerance mechanisms, and management strategies is one of the most imperative research fields in plant biology, and the study will focus on the effects of salt stress in different growth stages, plant tolerance mechanisms, and agronomic management practices for successful maize production all over the world.
Reference381 articles.
1. Khaliq A, Iqbal MA, Zafar M, Gulzar A. Appraising economic dimension of maize production under coherent fertilization in Azad Kashmir, Pakistan. Custos Agronegocio. 2019; 15: 243-253.
2. Majid MA, Islam MS, El Sabagh A, Hasan MK, Saddam MO, Barutcular C, et al. Influence of varying nitrogen levels on growth, yield and nitrogen use efficiency of hybrid maize (Zea mays). J Exp Biol Agril Sci. 2017; 5: 134-142.
3. Sannagoudar MS, Murthy KK. Growth and yield of maize (Zea mays L.) as influenced by planting geometry and nutrient management in maize based intercropping. Mysore J Agricl Sci. 2018; 52: 278-284.
4. Zia UU, Niazi AR, Ahmad Z, Alharby HF, Waraich EA, Abbasi A, et al. Dose optimization of silicon for boosting arbuscular mycorrhizal fungi colonization and cadmium stress mitigation in maize (Zea mays L.). Environ Sci Pollut Res. 2023; 30: 67071-67086.
5. Atta MI, Zehra SS, Ali H, Ali B, Abbas SN, Aimen S, et al. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: Plants-implications for phytoremediation. PeerJ. 2023; 11: e16067.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献