Grid-Connected Photovoltaic System for Generating Energy to Dairy Farm Activities

Author:

Steidle Neto Antonio José,Lopes Daniela de Carvalho

Abstract

Minas Gerais is the leading milk-producing state in Brazil, and many dairy activities are supplied with electricity by the cable aerial network of the electrical energy state company. Given that the Brazilian energy matrix relies primarily on hydroelectric power, studies on the potential of other renewable energy sources in the context of dairy farms are innovative. Additionally, frequent disturbances and interruptions have motivated the installation of solar energy systems on dairy farms. However, the scarcity of technical and scientific studies demonstrating the benefits of electricity generated from photovoltaic panels in Minas Gerais has caused dairy farmers to fear potential financial losses. In this study, grid-connected photovoltaic systems in dairy farms were evaluated, considering three fixed tilt angles for the panels (latitude - 10°, latitude, and latitude + 10°) and electrical energy demands of dairy activities associated with two herd sizes (100 and 150 cows). Meteorological databases and mathematical models were used to predict daily global radiation on tilted panels in dairy farms of two Brazilian municipalities of Minas Gerais State (Lavras and Paracatu). Energy consumption related to dairy activities was monitored for 12 months. For both municipalities, the best results were verified with the tilt angle of panels equal to the local latitude - 10°. The municipality with the lowest latitude (Paracatu) showed higher electricity generation potential. In all simulated scenarios, a greater energy surplus was found from late spring to early autumn (Southern Hemisphere), when the higher electricity generation by the photovoltaic panels met the elevated electrical energy demand of the dairy farms. A high energy surplus was also verified during midwinter, where lower energy consumption by the dairy farms compensated for the reduced availability of solar radiation. The proposed methodology can be adapted to other dairy farms, agricultural and urban buildings.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3