Nonlinear Optimal Control for a PMLSG-VSC Wave Energy Conversion Unit

Author:

Rigatos Gerasimos,Siano Pierluigi,Numay Mohammed,Abbaszadeh Masoud,Cuccurullo Gennaro

Abstract

This article aims to treat the nonlinear control problem for the complex dynamics of a wave energy unit (WEC) that consists of a Permanent Magnet Linear Synchronous Generator (PMLSG) and a Voltage Source Converter (VSC). The article has developed a globally stable nonlinear optimal control method for this wave power generation unit. The new method avoids complicated state-space model transformations and minimizes the energy dispersion by the control loop. A novel nonlinear optimal control method is proposed for the dynamic model of a wave energy conversion system, which includes a Permanent Magnet Linear Synchronous Generator (PMLSG) serially connected with an AC/DC three-phase voltage source converter (VSC). The dynamic model of this renewable energy system is formulated and differential flatness properties are proven about it. To apply the proposed nonlinear optimal control, the state-space model of the PMLSG-VSC wave energy conversion unit undergoes an approximate linearization process at each sampling instance. The linearization procedure relies on a first-order Taylor-series expansion and involves the computation of the system’s Jacobian matrices. It takes place at each sampling interval around a temporary operating point, which is defined by the present value of the wave energy conversion unit’s state vector and by the last sampled value of the control inputs vector. An H-infinity feedback controller is designed for the linearized model of the wave energy conversion unit. To compute the feedback gains of this controller, an algebraic Riccati equation is repetitively solved at each time step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3