Author:
Benavides Jose,Sharma Pushpesh,Al Saedi Ahmed,Kabir Shah
Abstract
This article outlines an innovative approach to explore thermal energy extraction for power generation or industrial hot water applications. Unlike traditional steady-state models, this approach embraces time-variant scenarios, explicitly incorporating a cyclical fluid circulation strategy to maintain a stable surface fluid temperature or power output. By introducing an increasing and decreasing stepwise rate sequence and an intermittent circulation strategy, the method aims to optimize efficiency in response to varying geothermal gradients. This approach also considers the effect of well configurations namely U-shaped heat exchangers, and conventional wellbore heat exchangers. The study emphasizes the importance of assessing the value proposition of this rate-sequencing approach in different North American basins, with the potential for replication in other regions. This approach recognizes the geographic dependency of thermal prospects, particularly at specific well depths. Notably, the article explores the possibility of retrofitting abandoned wells in oil fields and drilling new wells in geothermal-friendly areas for a comparative analysis of their relative value propositions. In essence, the proposed roadmap signifies a departure from traditional models, showcasing a dynamic and adaptable strategy for thermal energy extraction. This strategy aligns with the need for energy transition and changing energy mix for the future. The inclusion of retrofitting existing wells and drilling in strategic locations adds a practical dimension to the study, offering insights into the scalability and applicability of the proposed approach beyond its initial geographic focus.