Production and Characterization of Carboxymethylcellulase by Submerged Fermentation of <i>Moniliophthora perniciosa</i>

Author:

Santana Mona Liza,Santos Aline,Júnior Gildomar L. V.,Assis Sandra

Abstract

Microorganisms that are capable of degrading lignocellulolytic materials can produce extracellular cellulase complexes. Microorganisms are an excellent alternative for the production of cellulolytic complex, since these sources have a high power of multiplication. In this work, we researched the production by the fungus <em>Moniliophthora perniciosa</em>. The production and pH and temperature optimum optimization were studied by Response surface methodology and carboxymethylcellulase (CMCase) characterization. Thermal stability was evaluated at 60, 70, 80 and 90°C. Doehlert experimental design<em> </em>was employed using inductor concentration in five levels (3.0, 4.5, 6.0, 7.5 and 9.0 g L<sup>-1</sup> of yeast extract) and fermentation time was studied in three levels (7, 14 and 21 days). The production of CMC enzyme was higher in the concentration of 7.0 g L<sup>-1</sup> of yeast extract and 19 days fermentation time. CMCase showed optimum pH and temperature at 7.2 and 47°C, respectively. The CMCase retained 88.66% of residual activity after 30 minutes of incubation at 90°C. Due to the characteristic of thermal stability, this enzyme will be studied to be expressed in recombinant microorganisms.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3