Coral Reef Mapping Using Remote Sensing Techniques and a Supervised Classification Algorithm

Author:

White Erina, ,Mohseni Farzane,Amani Meisam, ,

Abstract

The vitality of the Great Barrier Reef (GBR) is threatened by many human-made impacts. Monitoring this ecosystem makes it possible to study the general condition and the health of the GBR. However, due to the large extent of the GBR and limited accessibility in the ocean environment, mapping and monitoring this ecosystem has been always challenging task and connived. In this regard, Remote Sensing (RS) is an effective technique that provides valuable information for mapping and monitoring this ecosystem. In an attempt to monitor the GBR, this article applied a supervised machine learning algorithm to classify the Landsat 8 imagery collected over the GBR. To this end, the spectral responses of coral reefs, shallow water, deep ocean, rocks and sands, and green alga were initially determined from the satellite images. This information was then ingested to the Maximum Likelihood supervised classifier to map coral reefs in the GBR. Additionally, this study discusses how the GBR has been affected by anthropogenic disturbance. The results provide confirmatory evidence that RS techniques present great promise as a means of mapping coral reefs and monitoring their general conditions. We used the ambiguity matrix and validation data to estimate the accuracy of the proposed method. Overall, the proposed method was able to identify 5 different classes considered in this article with an average accuracy of 90%.

Publisher

LIDSEN Publishing Inc

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3