Thermodynamics and Structural Optimization of Organic Rankine Cycle Plant for Clean Energy Access Using Artificial Bee Colony and Multi-Criteria Decision-Making Algorithms

Author:

Udo Aniebiet,Diemuodeke Ogheneruona,Ojapah Mohammed,Abam Fidelis,Ofodu Joseph C.

Abstract

The quest to decarbonize the energy space to avert the negative climate change consequences calls for using low/zero-carbon energy conversion technologies in the energy generation space. The Organic Rankine Cycle is a low/zero-carbon energy conversion technology for recovering waste heat from low to medium-temperature heat sources and for biomass conversion. Therefore, this paper presents the thermodynamic optimization, with an artificial bee colony algorithm, of different ORC configurations, including simple organic Rankine cycle, Regenerative Organic Rankine Cycle, Cascade Organic Rankine Cycle, Organic Rankine Cycle with Superheat, Organic Rankine Cycle with Superheat and Reheat, Regenerative-Superheat Organic Rankine Cycle, Regenerative-Reheat Organic Rankine Cycle and Two Complementary ORC using twelve (12) different working fluids. The thermodynamic optimization was followed by structural optimization using a multi-criteria decision approach. The modified-TOPSIS multi-criteria decision-making analysis was used to perform the structural optimization. The overall optimization study shows that the Regenerative-Reheat Organic Rankine Cycle, operating with an isopentane of 0 GWP and ODP, was selected as the best ORC configuration. The Regenerative-Reheat Organic Rankine Cycle has the following performance; thermal efficiency of 49.5%, maximum power output of 0.4 MW, condenser pressure of 90 kPa, and turbine pressure of 3.37 MPa. The results presented in this work will support clean energy developers in the clean energy access sector, especially in the agrarian community with huge agro-waste generation potentials.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3