Non-Isothermal Compressible Flow Model for Analyzing the Effect of High CO<sub>2</sub> Inlet Flow Rate on Particle Size in a Supercritical Antisolvent Process

Author:

de Almeida Regiani Aparecida,Vicente de Paula Rezende Ricardo,Reitz Cardoso Flavia Aparecida,Cardozo Filho Lucio

Abstract

In this work with CFD simulations, the evaluation of the supercritical anti-solvent (SAS) process for producing nanoparticles from an expanded solution of ethanol/solute in carbon dioxide is reported. The influence of the solution and antisolvent flow rates on mean particle size, the flow dynamic, and the supercritical mixture's jet velocity must be well established in the literature and analyzed. The high flow rate of the anti-solvent resulted in increased mean particle sizes for all studied cases. At the lowest flow rate of CO<sub>2</sub> examined, an increase in the solvent flow rate [0.3-1.0] ml/min initially led to a decrease of 11.2% in the mean particle diameter (MPD); however, further increasing the solvent flow rate [1.0-2.0]ml/min was an increase of 33% in this parameter. At the highest CO<sub>2</sub> flow rate, the behavior of MPS was the opposite; it had a rise de 13.5% in MPD with an increase in solvent flow rate; further increasing the flow rate of the solvent, there was a drop of 8.6% in MPD. Significant variations in the temperature lead to large fluctuations in the particle diameters. At last, the contact zones between CO<sub>2</sub> and ethanol were delimited, favoring the understanding of the influence of the flow patterns generated by the variation of the flow rates in the mean particle diameters.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3