Abstract
According to the United States Department of Energy, waste heat recovery would allow up to a 20% reduction in greenhouse gases (GHG) emission. Most of the waste energy is discharged as a low-grade heat at temperatures less than 250°C. Therefore, the development of new technologies and the enhancement of existing ones to convert low-grade heat into electrical or mechanical energy are of great importance. The working principle of adsorption-desorption heat pumps with cyclic switching between adsorption and desorption is adapted in the proposed heat engine to generate electrical power from low-temperature heat. Thermodynamic analysis of the heat engine cycle is carried out for the pair adsorbant-adsorbent: CO<sub>2</sub>-activated carbon. Its efficiencies are calculated accepting the ideal gas law and an adsorption-desorption equilibrium at the key points of the cycle. The cycle consists of two isochores and two isotherms like the Stirling engine, but at the same temperature range and without heat regeneration, its thermal efficiency (work per heat supplied) can reach 11.3% vs. 5.0% and specific work 50.7 vs. 3.55 in the latter. The proposed unit has thermal efficiency in the range of Organic Rankine Cycle units and can be utilized in small-scale applications up to 40kWe, where manufacturing cost of turbines or expanders for ORCs increases dramatically. Accounting for quality (temperature) of utilized heat, the proposed cycle’s exergy efficiency, <em>ζ<sub>ex</sub></em> = 34.5% approaches that of water-steam Rankine cycles utilizing natural gas or coal combustion.