Biogeochemical Technologies for Managing CO<sub>2</sub> Flows in Agroecosystems

Author:

Bashkin Vladimir,Alekseev Andrey,Levin Boris,Mescherova Evgenia

Abstract

The review article discusses the application of biogeochemical technologies aimed at restoring biogeochemical cycles in agroecosystems, primarily in the microbial link regulating CO<sub>2</sub> flows. The factors of management this microbial link when applying mineral and organic fertilizers are shown. The processes of mineralization of soil organic matter and methods of controlling soil's conjugate carbon- and nitrogen-mineralizing ability are considered. The changes in the productivity of agricultural ecosystems under conditions of increasing concentration of carbon dioxide in the atmosphere and soil air are considered. Various agrotechnological techniques are considered, including using zero tillage, organic fertilizers of various nature, and various meliorants, including phosphogypsum. Examples of recultivation of disturbed and polluted soils, waterlogged and/or over-drained soils are given and the impact on CO<sub>2</sub> fluxes is estimated. Based on numerous data, it is concluded that agroecosystems in most cases are a net source of CO<sub>2</sub>, and sequestration occurs only when agricultural land is transferred to fallow lands and at afforestation. At the same time, techniques aimed at reducing CO<sub>2</sub> fluxes using fertilizers in the "production–application" cycle are evaluated. A set of biogeochemical technologies aimed at assessing and stabilizing the microbial link of the biogeochemical cycle in agroecosystems is presented. Examples of the use of these technologies for regulating CO<sub>2</sub> emissions in agroecosystems are given. Using one of the biogeochemical technologies, the almost 5-fold decrease in the rate of CO<sub>2</sub> flows during the reclamation of disturbed tundra ecosystems is shown. Adopting agricultural low carbon technologies (ALCTs) cannot yet testify to their applicability to ensure both food and environmental safety. It is necessary to further develop and use biogeochemical technologies to restore biogeochemical cycles in agroecosystems, primarily in the microbial link regulating CO<sub>2</sub> flows.

Publisher

LIDSEN Publishing Inc

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3