Environmental Consequences in the Neighbourhood of Rapid Unplanned Urbanisation in Bangalore City

Author:

Ramachandra T.V.,Mondal Tulika,Settur Bharath,Aithal Bharath H

Abstract

The knowledge of landscape dynamics aids in evolving strategies for the prudent management of natural resources to sustain ecosystem services. The availability of spatiotemporal remote sensing data with advancements in artificial intelligence (AI) and machine learning (ML) algorithms has aided in assessing the ecological status in urban environments, markedly revealing complex patterns and interactions. The current communication presents landscape dynamics in the Bengaluru Urban district from 1973 to 2022 using a supervised machine learning technique based on the Random Forest algorithm with temporal Landsat data, which showed a 51.86% increase in the built-up area and a 26.28% decrease in the green cover. Rapid unplanned urbanization after globalization and the opening up of Indian markets (in Bengaluru city) has witnessed erosion in the natural surface (waterbodies and green cover) in the neighborhood, which has been impacting the health of the environment and people. Computation of fragmentation indices showed a decline of the native green cover by 177.2 sq. km. in the southern part of the district. Likely land use changes are predicted using the Cellular Automata Markov model considering the base case scenario. The analyses revealed a further possible increase in built-up to 1536.08 sq. km, a decrease in green cover by 14.32 sq. km by 2038, and the disappearance of water bodies, which highlights the need to mitigate the adverse impacts of land use changes through planned urbanization considering the environment and livelihood of local communities. The decline of heat sinks such as water bodies and green cover would contribute to an increase in the land surface temperature (LST), which would affect the microclimate of Bengaluru, highlighting the need to sustain ecosystem services to support the livelihood of local communities. Understanding the ecological significance of diverse habitat characteristics of the urban region and the prediction of likely changes in a high degree of spatial heterogeneity would assist the decision-makers in framing appropriate policies.

Publisher

LIDSEN Publishing Inc

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3