Enhancing Kerosene Selectivity of Fischer-Tropsch Synthesis by Periodical Pore Drainage Via Hydrogenolysis

Author:

Unglaub Carsten,Jess Andreas

Abstract

Accumulation of wax inside the catalyst pores during transient cobalt-catalyzed Fischer-Tropsch synthesis (FTS) leads to unfavorable product distribution and low activity by imposing internal mass transfer limitations. The condensation of paraffin severely changes the apparent product stream that actually leaves the reactor before the catalyst pores are filled completely and the steady state is reached. Thus, the product distribution of the transient FTS is less complex than expected in comparison to the steady-state FTS and increasingly consists of hydrocarbons (HCs) with an average chain length in the range of kerosene (C<sub>9</sub>-C<sub>17</sub>). So, in order to prevent FTS from reaching a steady state, the pores are drained periodically by hydrogenolysis (HGL). The alternating HGL is realized by a switch from syngas (H<sub>2</sub>, CO) to pure hydrogen at a reaction temperature in the range of 210°C to 240°C. The alternating process leads to an improvement in kerosene selectivity of 48%, 37%, and 28% at 210°C, 220°C and 240°C, respectively. Furthermore, the influence of temperature on the hydrogenolysis of long-chain HCs was experimentally investigated. It was found that temperature affects methane selectivity severely. A high hydrogenolysis temperature is favorable as this leads to a severely decreased overall methane selectivity and, thus to a higher production rate of alkanes within the carbon number range of 9 to 17.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3