Synthesis of NaA Zeolite: Conventional Route and Green Route

Author:

Barbosa Antusia dos Santos,Rodrigues Meiry Gláucia Freire

Abstract

The research describes a sustainable approach for the synthesis of zeolite NaA using kaolin as an alternative source of silica. The main objective of this research was to prepare NaA zeolite using metakaolin derived from kaolin from the state of Rio Grande do Norte, Brazil, as an alternative source of silica, reducing the production cost and evaluating its thermal stability. In addition, a study of the thermal stability of the zeolite and cost estimates for zeolite production were carried out. Traditional methods of zeolite synthesis, mainly through hydrothermal processes, are often associated with high costs, waste generation, and negative environmental impacts. This work addresses these concerns by exploring a more sustainable approach. The kaolin used in the study was characterized by X-ray diffraction, energy-dispersive X-ray fluorescence spectroscopy, infrared spectroscopy, and thermogravimetry. These techniques help confirm the composition and properties of the raw material. NaA zeolite was synthesized by replacing sodium silicate with metakaolin using the hydrothermal synthesis method. The NaA zeolite was characterized by XRD and IR, which helped verify its purity and structural order. The study's results demonstrated that kaolin waste mainly consists of kaolinite, which suggests that it can be effectively used as a source of silica. Furthermore, the research successfully produced low-cost NaA zeolite in a relatively short synthesis time, achieving high purity and structural order. The study highlights the potential of using kaolin waste as a sustainable source of silica for zeolite production, helping to minimize environmental impacts and reduce processing costs compared to traditional methods. This work presents a promising and sustainable method for producing NaA zeolite from kaolin waste, which has the potential to contribute to cost reduction, waste reduction, and improved environmental sustainability in zeolite production processes. This research is aligned with the broader goals of reducing the ecological footprint of industrial processes while maintaining product quality and efficiency.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3