Cell Level- Modeling of Aging and Rejuvenation

Author:

Koptyug Andrey,Sukhovei Yurij,Kostolomova Elena,Unger Irina,Kozlov Vladimir

Abstract

Understanding processes related to human aging and rejuvenation relies on experimental data and advanced models operating at different levels. There are several existing conceptual and specific modeling approaches. However, one of the existing tasks is compiling generic models linking properties at cell and cell-element levels to properties at systemic levels - tissue, organ, and whole body. One of the critical issues in the relevant models is the enormity of interacting components at the cell and sub-cell levels needed to represent the properties of high-level systems properly. This paper describes a promising approach to modeling and simulation at the cell population level for studying aging and rejuvenation. It also presents initial conclusions formulated based on the results of modeling and experiments coupled to it. The model is based on the concepts of the proliferation niche and homeostatic cell number stabilization in the cell population through the associated action of proliferation and apoptosis. Importantly, we address the issue of defining “aging” and “rejuvenation” for cell populations containing large numbers of cells of different ages. It is possible to demonstrate that homeostatic regulation can be performed by maintaining the concentration of a single regulatory substance. Predictions and simulations of the proposed model are compared to data from existing publications and experiments specifically conducted to validate the model. Currently, none of the available data contradicts the modeling results at the proposed level of detail. However, an inadequate number of elements and the employed statistical approach further limit progress in such modeling. Expanding the proposed method to include a realistic number of features representing human tissues, organs, and body and to allow for proper modeling of aging and rejuvenation processes requires more advanced modeling techniques.

Publisher

LIDSEN Publishing Inc

Subject

Automotive Engineering

Reference95 articles.

1. WHO. WHO Health Topics: Aging [Internet]. Geneva: WHO. Available from: https://www.who.int/health-topics/ageing.

2. United Nations. World Population Ageing 2020, Highlights [Internet]. New York, NY: United Nations; 2020. Available from: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Sep/un_pop_2020_pf_ageing_10_key_messages.pdf.

3. Eurostat. Ageing Europe, 2019 edition [Internet]. Brussels: Eurostat; 2019. Available from: https://ec.europa.eu/eurostat/documents/3217494/10166544/KS-02-19%E2%80%91681-EN-N.pdf/c701972f-6b4e-b432-57d2-91898ca94893.

4. Marois G, Bélanger A, Lutz W. Population aging, migration, and productivity in Europe. Proc Natl Acad Sci USA. 2020; 117: 7690-7695.

5. Burtless G. The impact of population aging and delayed retifrement on workforce productivity. Washington, DC: Brookings Institution; 2013. Available from: https://www.brookings.edu/research/the-impact-of-population-aging-and-delayed-retirement-on-workforce-productivity/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3