Application of Finite Element Method for Mechanical Characterization of Wood and Reconstituted Lignocellulosic-Based Composites – A Review

Author:

Alade Adefemi,Ibrahim Ahmed

Abstract

Performance evaluations of wood and other lignocellulosic-based composites involve complex scenarios of several factors such as material heterogeneity and geometry that often leads to complicated, expensive, and time-consuming experimental procedures. Hence, the application of computational modeling and simulation is desirable to mitigate these biocomposites’ performance testing challenges. This review paper, therefore, presents an outlook on the finite element method (FEM) application in probing performance characteristics of wood and solid wood-based composites as well as reconstituted wood and other lignocellulosic-based composites. Notwithstanding the complex nature of wood and other lignocellulosic biomass, the feasibility of FEM application in characterizing their performances has been favorably demonstrated. Going forward, broader applications of FEM combined with the design of experiments would further establish developing protocols. More exploration of FEM-based parametric and optimization studies would facilitate comprehensive, cost-efficient, and swift biocomposites design and performance optimization processes thereby enhancing their acceptance and implementation in target applications.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3