Author:
Thakur Sujeet Kumar,Eswaran Sambasivan venkat
Abstract
The Inert soil obtained from the Ghazipur Municipal Solid Waste landfill located in East Delhi, India has been used as the starting material for the work described in this paper. This mountain-like monster is often in the news for its bad smell, pollution of the groundwater in the area from its leachates, and the occasional fires in it endangering the lives of the people living nearby. Landfills produce many greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub>, CO, HCHO, H<sub>2</sub>S, and NH<sub>3</sub>) which are poisonous and cause environmental pollution in the surrounding areas. Our work sought alternative uses for this waste material (“Waste to Wealth”). These studies could lead to a cleaner environment, lower carbon footprints, diminished global warming, and positively impact climate change. These are very hot topics being discussed under the sustainable development goals and COP-28 urging, in particular, the developed world to reduce their carbon footprints and to create a global fund to mitigate the climate crisis in underdeveloped countries caused by climate change. Four new Pyrethrin-like compounds have been isolated and characterized spectroscopically [using UV-visible, FT-IR, NMR spectroscopy (<sup>1</sup>H-NMR spectroscopy), Mass Spectrometry, and Scanning Electron Microscopy (SEM)]. The new compounds possess a cyclopropane ring substituted on one side by a 4-methoxy-3-oxo-pyruvate unit and on the other side by an N-formyl-amino acid unit. The presence of pyrethrin-like cyclopropane structures indicates possible insecticidal activities like natural pyrethrins. The N-formyl amino acid could be an important factor in their bioactivity. Computational studies using the software Chem J. predict antibacterial, and anti-inflammatory activities with an IC<sub>50</sub> value of 8.720.
Reference30 articles.
1. Sarkar A. Mumbai: Under pressure from High Court, BMC dumps waste at Kanjurmarg [Internet]. Mid-Day; 2019. Available from: https://www.mid-day.com/mumbai/mumbai-news/article/mumbai-under-pressure-from-high-court-bmc-dumps-waste-at-kanjurmarg-20883184.
2. Al-Khatib IA, Arafat HA, Basheer T, Shawahneh H, Salahat A, Eid J, et al. Trends and problems of solid waste management in developing countries: A case study in seven Palestinian districts. Waste Manage. 2007; 27: 1910-1919.
3. Alfaia RG, Costa AM, Campos JC. Municipal solid waste in Brazil: A review. Waste Manage Res. 2017; 35: 1195-1209.
4. Kahvand M, Gheitarani N, Khanian MO, Ghadarjani RA. Urban solid waste landfill selection by SDSS. Case study: Hamadan. Environ Prot Eng. 2015; 41: 47-56.
5. Verma RL, Borongan G, Memon M. Municipal solid waste management in Ho Chi Minh City, Viet Nam, current practices and future recommendation. Procedia Environ Sci. 2016; 35: 127-139.