Abstract
Studies aiming to identify susceptibility genes for schizophrenia and other complex psychiatric disorders are faced with the confounds of subjective clinical criteria, commonly occurring phenocopies, significant between-subject variability of candidate traits, and the likelihood of allelic and locus heterogeneity that has been shown to define the genetics of other complex human brain and somatic disorders. Additionally, research aimed at identification of the molecular origins of schizophrenia must also deal with the confounding nature of the human brain. Unlike organs with a few common cellular phenotypes, transcriptomes, and proteomes, individual neurons are often distinct from one another in all of these respects. In this review, we present recent work testing the assumption that studies of genetic susceptibility in complex polygenic disorders such as schizophrenia might be enhanced by the identification of intermediate phenotypes related to more fundamental aspects of brain development and function. Progress in the identification of meaningful intermediate phenotypes in schizophrenia has been made possible by the advent of newer methods in cognitive neuroscience and neuroimaging, and the use of combined multimodal techniques.
Subject
Biological Psychiatry,Psychiatry and Mental health
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献