Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection

Author:

Setiadi De Rosal Ignatius MosesORCID,Widiono SuyudORCID,Safriandono Achmad NuruddinORCID,Budi SetyoORCID

Abstract

Phishing attacks continue to be a significant threat to internet users, necessitating the development of advanced detection systems. This study explores the efficacy of a Bidirectional Gated Recurrent Unit (BiGRU) model combined with feature selection techniques for detecting phishing websites. The dataset used for this research is sourced from the UCI Machine Learning Repository, specifically the Phishing Websites dataset. This approach involves cleaning and preprocessing the data, then normalizing features and employing feature selection to identify the most relevant attributes for classification. The BiGRU model, known for its ability to capture temporal dependencies in data, is then applied. To ensure robust evaluation, we utilized cross-validation, dividing the data into five folds. The experimental results are highly promising, demonstrating a Mean Accuracy, Mean Precision, Mean Recall, Mean F1 Score, and Mean AUC of 1.0. These results indicate the model's exceptional performance distinguishing between phishing and legitimate websites. This study highlights the potential of combining BiGRU models with feature selection and cross-validation to create highly accurate phishing detection systems, providing a reliable solution to enhance cybersecurity measures.

Publisher

IntSys Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3