Applying long short-term memory recurrent neural networks to intrusion detection

Author:

Staudemeyer Ralf C.

Abstract

We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM) recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge. To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We found networks with four memory blocks containing two cells each offer a good compromise between computational cost and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to 1,000 epochs showed good results. We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes. Our results show that the LSTM classifier provides superior performance in comparison to results previously published results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.

Publisher

South African Institute of Computer Scientists and Information Technologists

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Education,Information Systems

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Scale Temporal Feature Extraction Approach for Network Traffic Anomaly Detection;International Journal of Information Security and Privacy;2024-09-14

2. Học Đặc Trưng Không Gian Dùng CNN trong Hệ Thống Phát Hiện Xâm Nhập Mạng;Journal of Technical Education Science;2024-08-28

3. IT Intrusion Detection Using Statistical Learning and Testbed Measurements;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

4. A Comparative Analysis of Convolutional, Sequential and Their Hybrid Models in Detecting Cyber-Attacks;2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST);2024-04-11

5. A Survey on Artificial Intelligence-Based Cyber Security in IoT Networks;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3