Measures of stability and instability of the differential system zero solution and their dependence on the initial moment

Author:

Sergeev I.N.1

Affiliation:

1. Moscow State University

Abstract

The recently introduced concepts of stability measures and instability measures of different types are studied: Lyapunov, Perron or upper-limit. These concepts allow a natural probabilistic interpretation, which shows the dependence of specific properties of solutions of a differential system, starting close to its zero solution, on arbitrarily small perturbations of the initial values of the Cauchy problem with a fixed initial moment. The work examines precisely the dependence of these measures on the initial moment. It has been proved that this dependence is completely absent for one-dimensional and autonomous systems, as well as for many types of stability or instability of linear systems. Moreover, it has been proved that the extreme values of the measures of stability or instability themselves are always invariant with respect to the choice of the initial moment. Finally, an example of a system is given for which this dependence, on the contrary, manifests itself to the maximum possible extent.

Publisher

Udmurt State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3