Affiliation:
1. Siberian Federal University
Abstract
The problem of holomorphic extension of functions defined on the boundary of a domain into this domain is actual in multidimensional complex analysis. It has a long history, starting with the proceedings of Poincaré and Hartogs. This paper considers continuous functions defined on the boundary of a bounded domain $ D $ in $ \mathbb C ^ n $, $ n> 1 $, with piecewise-smooth boundary, and having the generalized boundary Morera property along the family of complex lines that intersect the boundary of a domain. Morera property is that the integral of a given function is equal to zero over the intersection of the boundary of the domain with the complex line. It is shown that such functions extend holomorphically to the domain $ D $. For functions of one complex variable, the Morera property obviously does not imply a holomorphic extension. Therefore, this problem should be considered only in the multidimensional case $ (n> 1) $. The main method for studying such functions is the method of multidimensional integral representations, in particular, the Bochner-Martinelli integral representation.
Funder
Russian Science Foundation
Subject
Fluid Flow and Transfer Processes,General Mathematics,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献