Affiliation:
1. Tambov State Technical University
Abstract
The problem of automation of the processes of information transmission and processing in adaptive information systems is considered. An analysis of existing approaches to solving this problem showed the prospects of using neural network technologies. A neural network method for processing and transmitting information in adaptive information systems is formulated. The method includes a formalized description of a neural network data channel - a software tool for analysis, data processing and selection of data transfer protocol. The main stages of the proposed method are outlined: classification of the structures of the source data, their transformation, data processing, selection of the necessary protocol for transmitting information. Each of the stages is implemented through neural networks of various architectures. The theoretical rationale of the possibility of using the neural network method is given, obtained on the basis of the proof of a number of theorems. The novelty of the proposed method consists in the transition from an analytical solution of the problems of classification, processing and data transfer to an automated approach using machine learning technologies. The practical significance of the neural network method is to reduce the complexity of the implementation of information processing and transmission processes, to increase the level of automation in the organization of intermodular interaction. The implementation of the neural network method has been assessed using a number of software complexity assessment metrics. The application, virtues and failings of the developed method are analyzed.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Fluid Flow and Transfer Processes,General Mathematics,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献