Algorithmically-generated Corpora that use Serial Compositional Principles Can Contribute to the Modeling of Sequential Pitch Structure in Non-tonal Music

Author:

Dean Roger Thornton,Pearce Marcus Thomas

Abstract

We investigate whether pitch sequences in non-tonal music can be modeled by an information-theoretic approach using algorithmically-generated melodic sequences, made according to 12-tone serial principles, as the training corpus. This is potentially useful, because symbolic corpora of non-tonal music are not readily available. A non-tonal corpus of serially-composed melodies was constructed algorithmically using classic principles of 12-tone music, including prime, inversion, retrograde and retrograde inversion transforms. A similar algorithm generated a tonal melodic corpus of tonal transformations, in each case based on a novel tonal melody and expressed in alternating major keys. A cognitive model of auditory expectation (IDyOM) was used first to analyze the sequential pitch structure of the corpora, in some cases with pre-training on established tonal folk-song corpora (Essen, Schaffrath, 1995). The two algorithmic corpora can be distinguished in terms of their information content, and they were quite different from random corpora and from the folk-song corpus. We then demonstrate that the algorithmic serial corpora can assist modeling of canonical non-tonal compositions by Webern and Schoenberg, and also non-tonal segments of improvisations by skilled musicians. Separately, we developed the process of algorithmic melody composition into a software system (the Serial Collaborator) capable of generating multi-stranded serial keyboard music. Corpora of such keyboard compositions based either on the non-tonal or the tonal melodic corpora were generated and assessed for their information-theoretic modeling properties.

Publisher

The Ohio State University Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3