Anaplastik tiroid kanseri hücre hattının morfolojik analizi

Author:

OZİSİK Hatice1,OZDİL Berrin2,OZDEMİR Merve2,SİPAHİ Murat3,ERDOĞAN Mehmet4,CETİNKALP Sevki4,OZGEN Gokhan4,SAYGİLİ Fusun4,OKTAY Gulgun5,AKTUG Huseyin2

Affiliation:

1. Ege University, Faculty of Medicine, Department of Endocrinology and Metabolism

2. EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI

3. DOKUZ EYLUL UNIVERSITY, INSTITUTE OF HEALTH SCIENCES, BIOCHEMISTRY (MEDICINE) (DR)

4. EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI

5. DOKUZ EYLÜL ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI, KLİNİK BİYOKİMYA BİLİM DALI

Abstract

Aim: Thyroid follicular cell derived cancers are classified into three groups such as papillary thyroid cancer (85%), follicular thyroid cancer (12%) and anaplastic (undifferentiated) thyroid cancer (ATC) (3%). ATCs have very rapid course, poor treatment outcomes and they are very aggressive. The aim of current study was to assess the analysis of the morphological differences of ATC cell line with the normal thyroid cell line (NTC). Materials and Methods: NTH and ATC cells were examined with haematoxylin and eosin, the nucleus: cytoplasm (N:C) ratios were detected, and cell cycles were investigated. These cell lines were compared according to their N:C ratio and their abundance in cell cycle phases. Results: The N:C ratio was higher in ATC than NTC. Both cell groups were mostly found in G0/G1 phase (68.4; 82.8) and have statistical difference in both G0/G1 and S phases. Conclusion: The rapid course and the rarity of ATC are significant barriers for clinical trials. Cultured cell lines are very important to explore the behaviour in the biology of ATC cells (such as the cell cycle), to understand the course of the disease, and to find an effective target for treatment.

Publisher

Ege Journal of Medicine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3