Nilotinib Exerts a Therapeutic Approach via JAK/STAT Pathway and Cytokine Network in Chronic Myeloid Leukemia Cells

Author:

TEZCANLI KAYMAZ Burçin1ORCID,YAVUZ Tunzala2ORCID,ÇELİK Besne1ORCID,SABOUR TAKANLOU Leila1ORCID,ALÇITEPE İlayda1ORCID,SABOUR TAKANLOU Maryam1ORCID,AVCI Çığır1ORCID,SELVİ GÜNEL Nur1ORCID,SOYER Nur3ORCID,ŞAHİN Fahri3ORCID,SAYDAM Güray3ORCID

Affiliation:

1. EGE UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, MEDICAL DEPARTMENT OF BIOLOGY

2. AFYON KOCATEPE UNIVERSITY, SCHOOL OF MEDICINE

3. EGE UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF INTERNAL MEDICINE

Abstract

Aim: Chronic myeloid leukemia (CML) displays a constitutive tyrosine kinase (TK) activity which in turn leads to the activation of various signaling pathways and the outcome of leukemic phenotype. Activated STAT5A and STAT5B from JAK/STAT pathway induce cell growth, proliferation, differentiation, and survival of leukemic cells which are promoted by a cytokine network. Since the second-generation tyrosine kinase inhibitor nilotinib has the advantage of inhibiting this oncogenic TK activity; we aimed to investigate the underlying mechanism of its therapeutic approach and how it induced apoptosis via analyzing the forthcoming molecular targets of the pathway. Methods: By Nilotinib treatments, cell viability and proliferation assays, apoptotic analysis, expressional regulations of STAT5A&5B mRNA transcripts, protein expression levels, and also cytokines’ expressional assessments were determined in CML model K562 cells, in vitro. Results: Nilotinib treatment in a time and dose-dependent manner assessed a therapeutic approach by decreasing leukemic cell proliferation and survival; inducing leukemic cell apoptosis, down-regulating STAT5A&5B mRNA, and protein expression levels, and regulating cytokine expressional network. Conclusion: Nilotinib-mediated therapeutics could be dependent on targeting JAK/STAT pathway members STAT5A and STAT5B, besides; regulating the cytokine network might be another underlying mechanism for sensitization and response of K562 cells to nilotinib in leukemia pathogenesis.

Publisher

Ege Journal of Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3