Chemical variability in vyacheslavite, U(PO4)(OH): Crystal-chemical implications for hydrous and hydroxylated U4+, Ca, and REE phosphates

Author:

Steciuk Gwladys1,Škoda Radek2,Dillingerová Veronika23,Plášil Jakub1ORCID

Affiliation:

1. Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

2. Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

3. Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Abstract

Abstract Particularly interesting chemical variability in the U4+ phosphate mineral vyacheslavite from Menzenschwand (Germany) has been discovered and investigated by means of electron-diffraction and micro-chemical methods. Suggested variability comprises the elevated contents of calcium and rare-earth elements (REEs or Ln). Based on the crystal structure refinement from 3D electron diffraction data, the structural formula of Ca-rich vyacheslavite studied is U0.895Ca0.105 PO4(OH)0.790(H2O)0.210. In general, such compositional variability involving Ca2+ can be expressed as U1–x CaxPO4(OH)1–2x(H2O)2x. Based on detailed electron-probe microanalysis, regions extremely enriched in Y and Ln have been discovered, characterized by the contents up to 11 wt% of Y2O3 and ~4.5 wt% of Ln2O3. In addition to the above-mentioned substitution mechanism, substitution involving Y and Ln can be expressed as U4+ + OH– → REE3+ + H2O. Although the structure refinement has not provided direct evidence of H2O in the studied nano-fragments of vyacheslavite, the presence of H2O and its substitution at OH– sites is a reasonable and necessary charge-balancing mechanism. One H atom site was located during structure refinements; however, an additional H-site is only partially occupied and thus was not revealed from the refinement despite the high-quality data. Substitutional trends observed here suggest possible miscibility or structural relationship between vyacheslavite, rhabdophane, and ningyoite that may depend strongly on OH/H2O content, considering that all crystallize under similar paragenetic conditions.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3