Polytypism in semi-disordered lizardite and amesite by low-dose HAADF-STEM

Author:

Zhang Hui1,Zarzycki Piotr1,Gilbert Benjamin1,Banfield Jillian F.12

Affiliation:

1. Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A.

2. Department of Earth and Planetary Science, University of California, Berkeley, California 94720, U.S.A.

Abstract

Abstract Serpentine minerals exert important controls on the physical properties of ultramafic rocks and have the potential to influence deformation phenomena in fault zones and to control the release of water in subducted slabs. Sheet serpentine generally, and lizardite and amesite specifically, can adopt alternative crystallographic stacking arrangements called polytypes. Polytypism has been extensively studied in fully ordered crystals, but it remains largely enigmatic in the more common semi-disordered crystals that in long-range analyses such as X-ray diffraction only exhibit random combinations of 0b and ±1/3b interlayer shifts. To date, atomic-resolution imaging to identify locally ordered polytypes has been precluded by the beam-sensitive nature of this hydrous magnesium silicate mineral. Here, we employed low-dose high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to study the polytypic structure of semi-disordered lizardite and amesite. Because the electron dose was as low as ~6000 e–/Å2, it was possible to directly resolve oxygen atomic columns and all the cations with a resolution of ~1 Å and reveal the short-range order. For lizardite, we identified long-period non-standard polytypes, including examples with 3, 4, 8, and 9 layers stemming from the ordering of the octahedral tilt along the a-axis. For amesite, we found short-range ordered polytypes with periodicities of up to 42 Å stemming from the ordering of interlayer shifts along the b-axis. The resolution was sufficient to determine the relative abundance of 6R2, 6R1, 2H1, and 2H2 polytypes in amesite to be 46.1, 29.6, 7.7, and 1.9%, respectively. This is contrary to the expectation that the most common form of amesite is the 2H2 polytype, which may be more likely to form macroscopic crystals suitable for conventional X-ray diffraction-based studies. We conclude that HAADF-STEM methods open the way for the characterization of beam-sensitive minerals and to resolve the structural details of less well-ordered (but possibly more abundant) minerals at a unit-cell scale.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3