Trace-element segregation to dislocation loops in experimentally heated zircon

Author:

Peterman Emily M.1ORCID,Reddy Steven M.23ORCID,Saxey David W.3ORCID,Fougerouse Denis23ORCID,Quadir M. Zakaria4ORCID,Jercinovic Michael J.5

Affiliation:

1. Department of Earth & Oceanographic Science, Bowdoin College, Brunswick, Maine 04011, U.S.A.

2. School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia 6845, Australia

3. Geoscience Atom Probe, John de Laeter Centre, Curtin University, Perth, Western Australia 6102, Australia

4. Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University, Perth, Western Australia 6102, Australia

5. Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, U.S.A.

Abstract

Abstract To evaluate the mechanisms driving nanoscale trace element mobility in radiation-damaged zircon, we analyzed two well-characterized Archean zircons from the Kaapvaal Craton (southern Africa): one zircon remained untreated and the other was experimentally heated in the laboratory at 1450 °C for 24 h. Atom probe tomography (APT) of the untreated zircon reveals homogeneously distributed trace elements. In contrast, APT of the experimentally heated zircon shows that Y, Mg, Al, and Pb+Yb segregate to a set of two morphologically and crystallographically distinct cluster populations that range from 5 nm tori to 25 nm toroidal polyhedra, which are confirmed to be dislocation loops by transmission electron microscopy (TEM). The dislocation loops lie in {100} and {001} planes; the edges are aligned with <100>, <101>, and <001>. The largest loops (up to 25 nm diameter) are located in {100} and characterized by high concentrations of Mg and Al, which are aligned with <001>. The 207Pb/206Pb measured from Pb atoms located within all of the loops (0.264 ± 0.025; 1σ) is consistent with present-day segregation and confirms that the dislocation loops formed during our experimental treatment. These experimentally induced loops are similar to clusters observed in zircon affected by natural geologic processes. We interpret that differences in cluster distribution, density, and composition between experimentally heated and geologically affected zircon are a function of the radiation dose, the pressure-temperature-time history, and the original composition of the zircon. These findings provide a framework for interpreting the significance of clustered trace elements and their isotopic characteristics in zircon. Our findings also suggest that the processes driving cluster formation in zircon can be replicated under laboratory conditions over human timescales, which may have practical implications for the mineralogical entrapment of significant nuclear elements.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3