Dissolution-reprecipitation vs. solid-state diffusion in electrum: Examples from metamorphosed Au-bearing, volcanogenic massive sulfide (VMS) deposits

Author:

Liu Haiming12ORCID,Beaudoin Georges12

Affiliation:

1. Département de géologie et de génie géologique, Université Laval, Québec G1V 0A6, Canada

2. Research Center on the Geology and Engineering of Mineral Resources (E4M), Université Laval, Québec G1V 0A6, Canada

Abstract

Abstract Native Au-Ag alloys (electrum) are the predominant precious metal host in Au-bearing volcanogenic massive sulfide (VMS) deposits. The chemical composition and distribution of electrum records crystal growth and post-crystallization processes. In this study, we present detailed textural and compositional data of electrum from the Ming (Canada) and Boliden (Sweden) Au-bearing VMS deposits. Electron probe micro-analyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of electrum enable characterization of chemical zoning in heterogeneous electrum grains. Electrum from Ming exhibits Ag-rich cores, in gradational contact with an outer Au-rich transition zone also enriched in S, Fe, Cu, Zn, and Pb, which is in sharp contact with Ag-rich rims. The textural observations, coupled with in situ LA-ICP-MS data, highlight that the electrum zoning arises from a complex interaction between fluid facilitated solid-state diffusion (SSD) within the grain and coupled dissolution and reprecipitation (CDR) reactions at the grain interface, in response to changing fluid composition and extrinsic parameters, such as temperature, pH, and redox state at Ming. Electrum from Boliden, in contrast, shows an Au-rich core in contact with a gradually increasing Ag-rich rim enriched in Se, Bi, Sb, Te, Sn, S, and Zn, which indicates the formation by fluid facilitated SSD reactions. The different local re-equilibrium caused by SSD from two deposits are attributed to different transport ligands and effects of physicochemical parameters of fluids (e.g., pH and fO2), resulting in different compositional zoning patterns within the electrum. The long-lived metamorphic events that affected the occurrence and compositions of electrum at both VMS deposits, probably provided the elevated temperature and deformation to allow pervasive fluids to remobilize trace metals in electrum, which resulted in the complex chemical zoning in electrum. This study provides insights from in situ, textural and chemical analyses to understand the formation of complex chemical zoning in electrum in metamorphosed VMS deposits.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3