Electrical conductivity of diaspore, δ-AlOOH and ε-FeOOH

Author:

Wang Ran1,Yoshino Takashi1

Affiliation:

1. Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan

Abstract

Abstract Electrical conductivities of diaspore (α-AlOOH), δ-AlOOH, and ε-FeOOH were measured by impedance spectroscopy with a frequency range from 10–1 to 106 Hz at pressures from 8 to 20 GPa and temperatures from 500 to 1200 K, well below the dehydration temperatures of these phases at the relevant pressures. For diaspore, the relationship between electrical conductivity and reciprocal temperature can be well fitted by the Arrhenius formula: σ = σ 0 exp ⁡ [ − ( Δ E + P Δ V ) k T ] , where σ0 is the pre-exponential factor, ∆E is the activation energy, and ∆V is activation volume of 56.0 ± 1.2 S/m, 0.55 ± 0.02 eV, and 1.68 ± 0.12 cm3/mol, respectively. The electrical conductivity of diaspore decreases with increasing pressure ranging from 8 to 12 GPa by a half order of magnitude, whereas the conductivity becomes almost constant in a pressure range above 12 GPa. δ-AlOOH and ε-FeOOH show one and two orders of magnitude higher electrical conductivity than diaspore. Electrical conductivities of δ-AlOOH and ε-FeOOH, which have isostructural CaCl2-type hydroxide structure, show the nearly identical activation enthalpies (0.38 ± 0.01, 0.33 ± 0.05 eV), which are relatively lower than that of diaspore. The dominant conduction mechanism of AlOOH phases can be regarded as proton conduction. The conductivity difference between diaspore and δ-AlOOH attributes to result in the different O1H bond lengths of each phase. The reduction of O1H bond length with increasing pressure could enhance the proton migration by reducing the potential barrier, thereby raising the electrical conductivity. Small polaron conduction may contribute to the conductivity of ε-FeOOH to generate higher conductivity than δ-AlOOH. Furthermore, hydrogen bond symmetrization will also play an important role in the conductivity discrepancy of these hydrous minerals with CaCl2-type hydroxide structure. For subducted sedimentary rocks, polymorphs of AlOOH and FeOOH are representative hydrous phases. Al-rich sediments show conductivity reduction with increasing depth until phase transformation occurs because diaspore represents negative pressure dependence of conductivity. After transformation to δ-AlOOH, the conductivity will jump up around 18 GPa. If ε-FeOOH is stable above 5 GPa in an iron-rich lithology, such as banded iron formation (BIF), a high conductivity zone with positive pressure dependence could be observed to the deep lower mantle.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3