The (chemical) potential for understanding overstepped garnet nucleation and growth

Author:

Nagurney Alexandra B.1ORCID,Caddick Mark J.1,Dragovic Besim2,Busse Kristen3

Affiliation:

1. Department of Geosciences, Virginia Tech, 4044 Derring Hall 926 West Campus Drive, Blacksburg, Virginia 24061, U.S.A.

2. School of the Earth, Ocean and Environment, University of South Carolina, 701 Sumter Drive, Columbia, South Carolina 29208, U.S.A.

3. ExxonMobil, 22777 Springwoods Village Parkway, Spring, Texas, 77289, U.S.A.

Abstract

Abstract Overstepping of porphyroblast-forming reactions has been shown to occur in regional, contact, and subduction zone metamorphism, calling into question the paradigm that metamorphic mineral reactions occur at or very close to thermodynamic equilibrium. These overstepped reactions result from the fact that nucleation and growth of new phases requires a thermodynamic driving force or a “departure” from equilibrium. We use phase equilibria modeling to elucidate the energetic consequences of over-stepped garnet nucleation and growth by comparing the chemical potentials of garnet-forming oxide components (MnO, CaO, FeO, MgO, Al2O3) in two sets of calculations: one in which Gibbs free energy is minimized and one in which the minimization proceeds under identical conditions but in the forced absence of garnet. We focus on 12 examples from the literature that have previously described garnet nucleation as minimally overstepped (garnet nucleation at the P-T of initial garnet stability) or garnet nucleation as more substantially overstepped (garnet nucleation at P-T conditions greater than initial garnet stability). For a small P-T interval above nominal garnet-in reactions, differences in the chemical potentials between the two calculations are commonly minimal. In all tested examples calculated using two versions of the THERMOCALC thermodynamic data set, the chemical potential of Al2O3 (μAl2O3) diverges between garnet-bearing and garnet-absent calculations at greater P-T conditions than that of MnO, CaO, FeO, and MgO. The P-T interval between thermodynamic garnet-in and the point at which μAl2O3 differs substantially between the two sets of calculations appears to be a function of bulk-rock MnO content, reemphasizing the role that small quantities of MnO play in the apparent stability of garnet in calculated phase equilibria. These results highlight the importance of considering multiple thermodynamic data sets, the location of the garnet-in curve, and the abundance of mineral phases in the discussion of overstepped metamorphic reactions. The results have implications for determining kinetic barriers to crystal nucleation and growth and considering the most appropriate way of defining “garnet-in” for samples that have experienced overstepping.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3