Halogen heterogeneity in the subcontinental lithospheric mantle revealed by I/Br ratios in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada, and Brazil

Author:

Toyama Chiaki12,Sumino Hirochika34ORCID,Okabe Nobuaki25,Ishikawa Akira6,Yamamoto Junji7,Kaneoka Ichiro8,Muramatsu Yasuyuki2

Affiliation:

1. Institute of Geology and Geoinformation, Geological Survey of Japan, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 237-0061, Japan

2. Department of Chemistry, Gakushuin University, Tokyo 171-8588, Japan

3. Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan

4. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

5. Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan

6. Department of Earth and Planetary Sciences, School of Science, Tokyo Institute of Technology, Tokyo 152-8851, Japan

7. Department of Earth and Planetary Sciences, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan

8. Earthquake Research Institute, The University of Tokyo, Tokyo 113-0032, Japan

Abstract

Abstract To investigate halogen heterogeneity in the subcontinental lithospheric mantle (SCLM), we measured the concentrations of Cl, Br, and I in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada, and Brazil. The samples can be classified into two groups based on halogen ratios: a high-I/Br group (South Africa, Greenland, Brazil, and Canada) and a low-I/Br group (China and Siberia). The halogen compositions were examined with the indices of crustal contamination using Sr and Nd isotopes and incompatible trace elements. The results indicate that the difference between the two groups was not due to different degrees of crustal contamination but from the contributions of different mantle sources. The low-I/Br group has a similar halogen composition to seawater-influenced materials such as fluids in altered oceanic basalts and eclogites and fluids associated with halite precipitation from seawater. We conclude that the halogens of the high-I/Br group are most likely derived from a SCLM source metasomatized by a fluid derived from subducted serpentinite, whereas those of the low-I/Br group are derived from a SCLM source metasomatized by a fluid derived from seawater-altered oceanic crust. The SCLM beneath Siberia and China could be an important reservoir of subducted, seawater-derived halogens, while such role of SCLM beneath South Africa, Greenland, Canada, and Brazil seems limited.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3