Fractal distribution of mineral species among the crystallographic point groups

Author:

Hummer Daniel R.1ORCID

Affiliation:

1. School of Earth Systems and Sustainability, Southern Illinois University, Carbondale, Illinois 62901, U.S.A.

Abstract

Abstract Crystallographic data from 5289 IMA-approved mineral species in the RRUFF database were used to examine the distribution of species among the 32 crystallographic point groups. It is found that within each crystal system, minerals strongly prefer point groups with higher group orders. Within a crystal system, the abundance of minerals belonging to each point group approximately obeys a power law with respect to group order, the same mathematical formalism that describes objects with fractal geometry. In this framework, each crystal system has its own fractal dimension; crystal systems possessing threefold (or sixfold) symmetry elements (i.e., trigonal, hexagonal, isometric) have significantly lower fractal dimension (<2), while those with only one-, two-, or fourfold symmetry elements (triclinic, monoclinic, orthorhombic, tetragonal) have higher fractal dimension (>2). While higher symmetry is preferred within a crystal system, the opposite trend is observed when comparing between crystal systems, with more species preferring crystals systems with lower order symmetry elements than those with higher order symmetry elements at constant group order. The combination of these two competing trends leads to a complex distribution of minerals among the crystal systems, and to the monoclinic group 2/m, the orthorhombic group 2/m2/m2/m, and the triclinic group 1 being the three most popular point groups, respectively. The fractal behavior of symmetry distribution among minerals points toward universal scaling patterns not just in physical, geometric objects but also in the way that symmetry is incorporated into natural periodic structures.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3