Mesoproterozoic seafloor authigenic glauconite-berthierine: Indicator of enhanced reverse weathering on early Earth

Author:

Ma Jianbai12,Shi Xiaoying12,Lechte Maxwell3,Zhou Xiqiang45,Wang Zhenfei6,Huang Kangjun6,Rudmin Maxim7,Tang Dongjie18

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China

2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Québec H3A 0E8, Canada

4. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

5. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

6. State Key Laboratory for Continental Dynamics and Early Life Institute, Department of Geology, Northwest University, Xi’an 710069, China

7. Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia

8. Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Abstract Sedimentary records suggest that the mid-Proterozoic (ca. 1.8–0.8 Ga) was persistently characterized by a greenhouse climate despite significantly lower solar luminosity compared to modern levels. To maintain greenhouse conditions, the partial pressure of carbon dioxide (pCO2) must have remained elevated, possibly indicative of key differences in the complexities of the carbon cycle compared to the modern. Modeling has suggested that high pCO2 was likely maintained by elevated rates of “reverse weathering:” marine authigenic clay formation, a process that consumes alkalinity and generates CO2. This process is kinetically slow in modern marine environments, yet is hypothesized to have been enhanced during the mid-Proterozoic due to the greater availability of important species for clay authigenesis such as silica and ferrous iron. This hypothesis is testable using the geological record, because enhanced reverse weathering would lead to the formation of abundant marine authigenic clays. However, the distribution of marine authigenic clays in the Proterozoic sedimentary record has not been paid sufficient attention. In this study, we report the presence of authigenic clays (glauconite and berthierine) from the Xiamaling Formation (ca. 1.4 Ga), North China. The glauconite-berthierine horizons occur as millimeter-to centimeter-thick laminae interbedded with muddy siltstone and feature detrital grains supported by the clay matrix. In places, these layers were partially reworked to form soft and cohesive intraclastic sands, suggesting a syndepositional origin. We hypothesize that marine iron cycling in the iron- and silica-rich mid-Proterozoic oceans may have facilitated the formation of authigenic iron-rich clay during the deposition of the Xiamaling Formation. The formation of iron-hydroxides on the seafloor—and the local increase in pH caused by subsequent dissimilatory iron reduction—could have resulted in the absorption of SiO2, Al(OH)3, and Fe(OH)2 to form soft, cohesive and noncrystalline Fe(OH)3-SiO2-Al(OH)3-Fe(OH)2 gels. These gels would have subsequently converted to glauconite/berthierine through aging. The transformation from glauconite-rich layers to berthierine-rich laminae was likely facilitated by a greater availability of Fe(II), and therefore higher Fe(II)/TFe and Fe/Si ratios. We suggest that the relatively rapid formation of syndepositional, seafloor berthierine and glauconite layers in the basal Xiamaling Formation is the result of enhanced reverse weathering during this time. This study provides an important geological support for carbon cycle models that invokes enhanced reverse weathering rates in the mid-Proterozoic ocean that may have helped to maintain a high-baseline pCO2 during this time.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3