Re-examination of the heterotype solid solution between calcite and strontianite and Ca-Sr fluid-carbonate distribution: An experimental study of the CaCO3-SrCO3-H2O system at 0.5–5 kbar and 600 °C

Author:

Schiperski Ferry1,Liebscher Axel23,Gottschalk Matthias2,Franz Gerhard1

Affiliation:

1. Technische Universität Berlin, Department of Applied Geosciences, Applied Geochemistry, 10587 Berlin, Germany

2. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

3. † Present address: BGE Bundesgesellschaft für Endlagerung mbH, 38226 Salzgitter, Germany.

Abstract

Abstract Carbonates are excellent carriers for divalent cations such as Ca, Mg, and Sr, and knowledge about their stability and solid solutions is important to understanding the global strontium cycle. To shed light on the topology of the two-phase field between calcite-type and aragonite-type (Ca,Sr)CO3 solid solutions as a function of temperature and pressure, and to learn more about the distribution of Sr and Ca between carbonates and fluid, we studied the system CaCO3-SrCO3-H2O at 600 °C in the pressure range 0.5–5 kbar. Conventional and rapid-quench hydrothermal syntheses were performed using a range of different starting materials. All bulk compositions were within the assumed/postulated two-phase field of calcite-type and aragonite-type (Ca,Sr)CO3 solid solutions. The run products were analyzed by scanning electron microscopy, electron microprobe analysis, and powder X-ray diffraction with Rietveld refinement. The results show that the heterotype solid solution is more extensive than previously assumed, with calcite incorporating up to 20 mol% SrCO3, which is twice as much as previously predicted. The compositional range of the aragonite-type solid solution was identical to that found in the literature. Using the data from this study, an updated version of the phase diagram P-X (Sr) at 600 °C for the CaCO3-SrCO3 system was calculated. The phase diagram does not support a phase transition within the trigonal (Ca,Sr)CO3 solid solution associated with rotational disorder of the CO3-groups. This order-disorder phase transition was previously postulated to explain some observed compositional trends in this system. Our new data are in line with other more recent studies. The distribution of Sr and Ca between the fluid and solid phases D = XSrsolid/XSrfluid  is near to 1.0 for calcite-type and on average around 2.0 for aragonite-type solid solutions. This contrasts with silicate-fluid systems in which Sr typically shows a strong preference for the fluid phase compared with Ca.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3