Impact of Biogenic Magnetite Formation and Transformation on Biogeochemical Cycles

Author:

Kappler Andreas12,Thompson Aaron3,Mansor Muammar1

Affiliation:

1. Geomicrobiology, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany

2. Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany

3. Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA

Abstract

Magnetite is a redox-active mineral that can form from both abiotic and biotic processes, and plays an active role in different biogeochemical cycles. Biogenic magnetite particles have properties that differ from their abiogenic counterparts in a variety of ways, including their size, chemical purity, magnetic properties, and association with biomass-derived organic matter. These properties directly influence magnetite reactivity—in particular its sorbent and redox behavior—affecting its association with metals, oxyanions, and other compounds in the environment. Biogenic (and abiogenic) magnetite particles are involved in redox processes by storing electrons, functioning as biogeobatteries, and by transferring electrons between microbial cells or between cells and inorganic constituents. Thus, magnetite influences the fate of contaminants and nutrients in the environment.

Publisher

Mineralogical Society of America

Subject

Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3