Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates

Author:

Cuadros Javier1,Michalski Joseph R.12,Dyar M. Darby3,Dekov Vesselin4

Affiliation:

1. Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

2. Department of Earth Sciences and Laboratory for Space Research, University of Hong Kong, Hong Kong, China

3. Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.

4. Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan

Abstract

Abstract Fe(II) only occupies octahedral sites in phyllosilicates, whereas Fe(III) can occupy both octahedral and tetrahedral sites. The controls on Fe(III) distribution between tetrahedral and octahedral sites have been a matter of great interest to understand the interplay between formation environment (Fe abundance, redox conditions) and crystal-chemical factors (stability of the crystal lattice) during crystallization of Fe-phyllosilicates. Here, for the first time, we present a model of Fe(III) distribution in 2:1 phyllosilicates. We investigated 21 samples of 2:1 phyllosilicates of submarine hydrothermal origin using XRD, chemical analysis, and Mössbauer spectroscopy (and other supporting techniques not presented here). An additional data set of 49 analyses of 2:1 phyllosilicates from the literature was also used. Overall, the data cover a wide range of dioctahedral and trioctahedral phyllosilicates, including end-member minerals and interstratified phases. Dioctahedral phyllosilicates have a steric control whereby tetrahedral Fe(III) is only allowed if at least five out of six octahedral atoms are larger than Al (typically Fe[III], Fe[II], Mg) that produces an expanded structure where tetrahedral sites can accommodate Fe(III). After this threshold, further Fe(III) atoms occupy tetrahedral sites preferentially (~73% of further Fe[III] atoms) over octahedral sites. In trioctahedral 2:1 phyllosilicates there is no steric hindrance to tetrahedral Fe(III) because the crystal dimensions are such that tetrahedral sites can accommodate Fe(III). On average, Fe(III) enters tetrahedral and octahedral sites in similar proportion, and the only apparent control on tetrahedral Fe(III) abundance is Fe(III) availability during crystallization. This model allows to predict Fe(III) distribution between structural sites, provides an avenue for further exploration of the thermodynamic stability of phyllosilicates using cationic size, and provides a tool to better describe stability/reactivity of Fe-rich phyllosilicates, the most reactive of phyllosilicates and very relevant in geochemical and biological processes.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3