Carbonation and the Urey reaction

Author:

Kellogg Louise H.1,Lokavarapu Harsha2,Turcotte Donald L.23

Affiliation:

1. Department of Earth and Planetary Science, University of California, Davis, 1 Shields Avenue, Davis, California 95616, U.S.A. Orcid 0000-0001-5874-0472

2. Department of Earth and Planetary Science, University of California, Davis, 1 Shields Avenue, Davis, California 95616, U.S.A.

3. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

Abstract

Abstract There are three major reservoirs for carbon in the Earth at the present time, the core, the mantle, and the continental crust. The carbon in the continental crust is mainly in carbonates (limestones, marbles, etc.). In this paper we consider the origin of the carbonates. In 1952, Harold Urey proposed that calcium silicates produced by erosion reacted with atmospheric CO2 to produce carbonates, this is now known as the Urey reaction. In this paper we first address how the Urey reaction could have scavenged a significant mass of crustal carbon from the early atmosphere. At the present time the Urey reaction controls the CO2 concentration in the atmosphere. The CO2 enters the atmosphere by volcanism and is lost to the continental crust through the Urey reaction. We address this process in some detail. We then consider the decay of the Paleocene-Eocene thermal maximum (PETM). We quantify how the Urey reaction removes an injection of CO2 into the atmosphere. A typical decay time is 100 000 yr but depends on the variable rate of the Urey reaction.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3