Affiliation:
1. Department Chemistry and Physics of Materials, Salzburg University, Jakob Haringer Strasse 2a, A-5020 Salzburg, Austria
2. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.
Abstract
Abstract
The low-temperature magnetic properties and Néel temperature, TN, behavior of four silicate substitutional solid solutions containing paramagnetic ions are analyzed. The four systems are: fayaliteforsterite olivine [Fe22+SiO4-Mg2SiO4], and the garnet series, grossular-andradite [Ca3(Alx,Fe1−x3+)2Si3O12], grossular-spessartine [(Cax,Mn1−x2+)3Al2Si3O12], and almandine-spessartine [(Fex2+,Mn1−x2+)3Al2Si3O12]. Local magnetic behavior of the transition-metal-bearing end-members is taken from published neutron diffraction results and computational studies. TN values are from calorimetric heat capacity, CP, and magnetic susceptibility measurements. These end-members, along with more transition-metal-rich solid solutions, show a paramagnetic to antiferromagnetic phase transition. It is marked by a CP λ-anomaly that decreases in temperature and magnitude with increasing substitution of the diamagnetic component. For olivines, TN varies between 65 and 18 K and TN for the various garnets is less than 12 K. Local magnetic behavior can involve one or more superexchange interactions mediated through oxygen atoms. TN behavior shows a quasi-plateau-like effect for the systems fayalite-forsterite, grossular-andradite, and grossular-spessartine. More transition-metal-rich crystals show a stronger TN dependence compared to transition-metal-poor ones. The latter may possibly show superparamagnetic behavior. (Fex2+,Mn1−x2+)3Al2Si3O12 garnets show fundamentally different magnetic behavior. End-member almandine and spessartine have different and complex interacting local superexchange mechanisms and intermediate compositions show a double-exchange magnetic mechanism. For the latter, TN values show negative deviations from linear interpolated TN values between the end-members. Double exchange seldom occurs in oxides, and this may be the first documentation of this magnetic mechanism in a silicate. TN behavior may possibly be used to better understand the nature of macroscopic thermodynamic functions, CP and S°, of both end-member and substitutional solid-solution phases.
Publisher
Mineralogical Society of America
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献