High-pressure Raman and Nd3+ luminescence spectroscopy of bastnäsite-(REE)CO3F

Author:

Vennari Cara E.12ORCID,Williams Quentin1

Affiliation:

1. Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, U.S.A.

2. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

Abstract

Abstract Bastnäsite-(Ce), a rare earth element (REE) bearing carbonate (Ce,La,Y,Nd,Pr)CO3F, is one of the most common REE-bearing minerals and has importance from both economic and geologic perspectives due to its large REE concentration. It also provides an example of the structural interplay between carbonate groups and fluorine ions, as well as the complex bonding properties of rare earth elements. We report Raman vibrational and Nd3+ luminescence (4F3/2→4I9/2, 4F3/2→4I11/2, and 4F5/2+2H9/2→4I9/2) spectra of natural bastnäsite-(Ce) to 50 GPa at 300 K. Two phase transitions are observed under compression. Bastnäsite-I remains the stable phase up to 25 GPa, where it undergoes a subtle phase transition to bastnäsite-II. This is likely produced by a change in symmetry of the carbonate ion. Bastnäsite-II transforms to bastnäsite-III at ~38 GPa, as demonstrated by changes in the luminescence spectra. This second transition is particularly evident within the 4F3/2→4I9/2 luminescent transitions, and it appears that a new rare earth element site is generated at this phase change. This transition is also accompanied by modest changes in both the Raman spectra and two sets of luminescent transitions. Despite these transformations, the carbonate unit remains a stable, threefold-coordinated unit throughout this pressure range, with a possible increase in its distortion. Correspondingly, the rare-earth element site(s) appears to persist in quasi-ninefold coordination as well, implying that the general bonding configuration in bastnäsite is at least metastable over a ~30% compression range. All pressure-induced transitions are reversible, with some hysteresis, reverting to its ambient pressure phase on decompression.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3