Thermal diffusivity and thermal conductivity of granitoids at 283–988 K and 0.3–1.5 GPa

Author:

Fu Huangfei12,Zhang Baohua1ORCID,Ge Jianhua12,Xiong Zili12,Zhai Shuangmeng1,Shan Shuangming1,Li Heping1

Affiliation:

1. Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract The thermal diffusivity and thermal conductivity of four natural granitoid samples were simultaneously measured at high pressures (up to 1.5 GPa) and temperatures (up to 988 K) in a multi-anvil apparatus using the transient plane–source method. Experimental results show that thermal diffusivity and thermal conductivity decreased with increasing temperature (<600 K) and remain constant or slightly increase at a temperature range from 700 to 988 K. Thermal conductivity decreases 23–46% between room temperature and 988 K, suggesting typical manifestations of phonon conductivity. At higher temperatures, an additional radiative contribution is observed in four natural granitoids. Pressure exerts a weak but clear and positive influence on thermal transport properties. The thermal diffusivity and thermal conductivity of all granitoid samples exhibit a positive linear dependence on quartz content, whereas a negative linear dependence on plagioclase content appears. Combining these results with the measured densities, thermal diffusivity, and thermal conductivity, and specific heat capacities of end-member minerals, the thermal diffusivity and thermal conductivity and bulk heat capacities for granitoids predicted from several mixing models are found to be consistent with the present experimental data. Furthermore, by combining the measured thermal properties and surface heat flows, calculated geotherms suggest that the presence of partial melting induced by muscovite or biotite dehydration likely occurs in the upper-middle crust of southern Tibet. This finding provides new insights into the origin of low-velocity and high-conductivity anomaly zones revealed by geophysical observations in this region.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3