High-temperature structural change and microtexture formation of sillimanite and its phase relation with mullite

Author:

Igami Yohei12,Ohi Shugo3,Kogiso Tetsu4,Furukawa Noboru5,Miyake Akira1

Affiliation:

1. Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

2. Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan

3. Faculty of Education, Shiga University, Ohtsu 520-0862, Japan

4. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

5. Graduate School of Science, Chiba University, Chiba 263-8522, Japan

Abstract

Abstract Synchrotron powder X-ray diffraction (XRD) experiments and transmission electron microscopy (TEM) observations of heat-treated sillimanite at various pressures were conducted to clarify the detailed phase relation between sillimanite and mullite. Under TEM, heat-treated sillimanite frequently showed anti-phase boundary (APB)-like textures with a displacement vector of ½[001]sil. Additional scanning TEM energy-dispersive X-ray spectroscopy analysis of regions with APB-like texture showed that they were clearly enriched in Al and accompanied by very fine, Si-rich glass inclusions, which indicates that the APB-like textures are composed of fine mullite. Moreover, synchrotron XRD patterns of these samples clearly showed double peaks of newly formed mullite and remnant sillimanite, indicating that the compositional transformation from sillimanite to mullite and glass is discontinuous. We separately determined the cell parameters of the sillimanite and mullite from the XRD pattern and found that the b axial length of the sillimanite increased with the treatment temperature, reflecting disordering of tetrahedral Al and Si in the sillimanite. In contrast, the positions of the deconvoluted mullite peaks indicated that the a axial length of mullite decreased as experimental pressure increased, owing to enrichment of the Si component. By projecting the cell parameters onto the a–b axial plane, the detailed changes in the crystallographic state of the sillimanite and mullite could be easily and comprehensively identified. On the basis of our results, we propose a new P-T diagram for the Al2SiO5 system that shows the transformation boundary between sillimanite and mullite + SiO2-rich melt and the contour of the Al/Si order parameter of sillimanite.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3