Constraining the timing and character of crustal melting in the Adirondack Mountains using multi-scale compositional mapping and in-situ monazite geochronology

Author:

Williams Michael L.1,Grover Timothy2,Jercinovic Michael J.1,Regan Sean P.3,Pless Claire R.1,Suarez Kaitlyn A.1

Affiliation:

1. Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, U.S.A. Orcid 0000-0003-0901-3396

2. Department of Earth and Atmospheric Sciences, University of Northern Colorado, Greeley, Colorado 80639, U.S.A.

3. Department of Geosciences, University of Alaska Fairbanks, Fairbanks, Alaska 99775, U.S.A.

Abstract

AbstractMigmatites are common in the hinterland of orogenic belts. The timing and mechanism (in situ vs. external, P-T conditions, reactions, etc.) of melting are important for understanding crustal rheology, tectonic history, and orogenic processes. The Adirondack Highlands has been used as an analog for mid/deep crustal continental collisional tectonism. Migmatites are abundant, and previous workers have interpreted melting during several different events, but questions remain about the timing, tectonic setting, and even the number of melting events. We use multiscale compositional mapping combined with in situ geochronology and geochemistry of monazite to constrain the nature, timing, and character of melting reaction(s) in one locality from the eastern Adirondack Highlands. Three gray migmatitic gneisses, studied here, come from close proximity and are very similar in microscopic and macroscopic (outcrop) appearance. Each of the rocks is interpreted to have undergone biotite dehydration melting (i.e., Bt + Pl + Als + Qz = Grt + Kfs + melt). Full-section compositional maps show the location of reactants and products of the melting reaction, especially prograde and retrograde biotite, peritectic K-feldspar, and leucosome, in addition to all monazite and zircon in context. In addition, the maps provide constraints on kinematics during melting and a context for interpretation of accessory phase composition and geochronology. More so than zircon, monazite serves as a monitor of melting and melt loss. The growth of garnet during melting leaves monazite depleted in Y and HREEs while melt loss from the system leaves monazite depleted in U. Results show that in all three localities, partial melting occurred during at ca. 1160–1150 Ma (Shawinigan orogeny), but the samples show high variability in the location and degree of removal of the melt phase, from near complete to segregated into layers to dispersed. All three localities experienced a second high-T event at ca. 1050 Ma, but only the third (non-segregated) sample experienced further melting. Thus, in addition to bulk composition, the fertility for melting is an important function of the previous history and the degree of mobility of earlier melt and fluids. Monazite is also a sensitive monitor of retrogression; garnet breakdown leads to increased Y and HREE in monazite. Results here suggest that all three samples remained at depth between the two melting events but were rapidly exhumed after the second event.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3