Paragenesis and precipitation stages of Nb-Ta-oxide minerals in phosphorus-rich rare-element pegmatites (Buranga dike, Rwanda)

Author:

Araujo Fernando Prado1ORCID,Hulsbosch Niels1,Muchez Philippe1

Affiliation:

1. KU Leuven, Department of Earth and Environmental Sciences & Institute for Sustainable Metals and Minerals. Celestijnenlaan 200E - Box 2410, 3001 Leuven, Belgium

Abstract

Abstract Nb-Ta-oxide minerals (NTO) are commonly associated with rare-element pegmatites where they are interpreted to precipitate at magmatic to magmatic-hydrothermal conditions. Although high-temperature experiments show that phosphorus and other fluxing elements (e.g., Li, B, F) can affect the saturation of NTO in pegmatitic systems, it is still uncertain how NTO saturation occurs in natural, flux-rich pegmatitic melts and whether crystallization occurs at multiple stages during magmatic or subsolidus conditions. The lithium-cesium-tantalum (LCT) family P-rich Buranga granitic pegmatite (western Rwanda) is used as a type locality to address this question. NTO mineralization in the Buranga dike occurs in two mineralogical units: in mineralogically complex phosphatic nodules, and in albitized parts. In the phosphatic nodules, Fe-Nb-Ta-rich rutile and columbite-group minerals (CGM) are observed, while in the albitized parts, only CGM is found. Fe-Nb-Ta-rich rutile precipitates at the magmatic stage along with early primary phosphates (i.e., F-rich montebrasite, wyllieite, and fluorapatite). Conversely, CGM mineralization occurs at the magmatic-hydrothermal stage in association with replacement phosphates like bertossaite, after primary minerals (i.e., rutile, wyllieite, rosemaryite, and trolleite) are destabilized due to crystal-melt-fluid interactions. NTO textures and chemical zoning show uneven evolution from core to rim and are related to localized alteration phenomena of the surrounding minerals. This indicates that local processes and element transfers are more important than dike-scale fractionation processes for NTO mineralization in P-rich granitic pegmatites. The restricted availability of Fe and Mn in the system, which is related to the competition between phosphate and oxide minerals, is identified as the main control on the CGM mineralization in the Buranga dike. CGM precipitation is only possible during the magmatic-hydrothermal stage when Fe and Mn are leached from the primary phosphates and remobilized to the Nb-Ta-bearing residual melt by the exsolved fluid.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3